案例简介
使用Sklearn-learn机器学习模块提供的鸢尾花数据集
案例代码
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
| import numpy as np from sklearn.model_selection import train_test_split from sklearn.datasets import load_iris
iris_dataset=load_iris() X_train,X_test,Y_train,Y_test = train_test_split(iris_dataset['data'],iris_dataset['target'],random_state=0) print("X_train:{}".format(X_train[:10])) print("Y_train:{}".format(Y_train[:10]))
from sklearn.neighbors import KNeighborsClassifier knn= KNeighborsClassifier(n_neighbors=1) knn.fit(X_train,Y_train)
new_iris=np.array([[5,2.9,1,0.2]]) prediction=knn.predict(new_iris) print("prediction_result:{}".format(prediction)) print("prediction_result_tartget_name:{}".format(iris_dataset['target_names'][prediction]))
print("test_score:{}".format(knn.score(X_test,Y_test)))
|
训练结果
1 2
| prediction_result:[0] prediction_result_tartget_name:['setosa']
|
模型精度
1
| test_score:0.9736842105263158
|